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Abstract Using the recently proposed maximal quadratic-free sets and the
well-known monoidal strengthening procedure, we show how to improve inter-
section cuts for quadratically-constrained optimization problems by exploiting
integrality requirements. We provide an explicit construction that allows an
efficient implementation of the strengthened cuts along with computational
results showing their improvements over the standard intersection cuts. We
also show that, in our setting, there is unique lifting which implies that our
strengthening procedure is generating the best possible cut coefficients for the
integer variables.
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1 Introduction

In recent years, we have seen multiple efforts in generating valid linear inequal-
ities to quadratically constrained quadratic programs (QCQPs) which, using
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Fig. 1.1: An intersection cut (red) separating f from S (blue). The cut is computed using
the intersection points of an S-free set C (green) and the rays of a simplicial cone K ⊇ S
(boundary in orange) with apex f ̸∈ S. Figure obtained from [8].

an epigraph formulation, we can assume have the form

min c̄Ts (1.1a)

s.t. s ∈ S ⊆ Rp, (1.1b)

where
S = {s ∈ Rp : sTQis+ bTi s+ ci ≤ 0, i = 1, . . . ,m}.

One of the approaches to generate such valid inequalities has been the inter-
section cut paradigm [21,1,15] which works as follows. We assume we have
f ̸∈ S, a basic feasible solution of a linear programming (LP) relaxation of
(1.1). Additionally, we assume we have a simplicial conic relaxation K ⊇ S
with apex f , and an S-free set C—a convex set satisfying int(C)∩S = ∅—such
that f ∈ int(C). Using these ingredients, we can find a cutting plane separat-
ing f from S. In Figure 1.1 we show a simple intersection cut in the case
when all p rays of K intersect the boundary of the S-free set C. In such case,
the intersection cut is simply defined by the hyperplane containing all such
intersection points. It is well known that one can assume C to be described
as C = {s ∈ Rp : ϕ(s − f) ≤ 1} where ϕ is a sublinear function. Given the
constraint f +

∑p
i=1 r

isi ∈ S with si ∈ R+ and ri ∈ Rp (e.g. the extreme rays
of K), the intersection cut separating f is

p∑
i=1

ϕ(ri)si ≥ 1. (1.2)

Muñoz and Serrano [18] recently provided a method for constructing maximal
quadratic-free sets for any arbitrary quadratic inequality, which would ensure
separation of any f ̸∈ S. Subsequently, Chmiela et al. [8] showed how to
implement these cuts with positive results in a broad class of problems.

One of the limitations of these cutting planes is that they do not use any inte-
grality information: if we were to add integrality requirements to (1.1)—thus
obtaining an MIQCP—the intersection cuts would be completely oblivious to
this.
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In this work, we remedy this via the monoidal strengthening framework [2]; a
strengthening of intersection cuts based on integrality information. Let S be
a closed set and suppose we have f ̸∈ S and a maximal S-free set C ∋ f . In
order to strengthen the intersection cut that separates f , monoidal strength-
ening aims at finding a monoid—a set containing the origin and closed under
addition—M such that C is S+M -free. If such a monoid is found, then we can
modify the rays associated to integer non-basic variables to obtain a stronger
cut coefficient: when si is an integer variable, the coefficient ϕ(ri) in (1.2)
can be improved to ψ(ri) := infm∈M ϕ(ri +m). We provide a more in-detail
overview of this procedure in Section 2.

In this paper, we show how to apply monoidal strengthening to intersection
cuts obtained from maximal quadratic-free sets [18,8]. As noted in [18], using
linear transformations (diagonalization and homogenization), one can shift the
focus from a generic quadratic set, S = {s ∈ Rp : sTQs+ bTs+ c ≤ 0}, to one
of the following two sets:

Sh := {(x, y) ∈ Rn+m : ∥x∥ ≤ ∥y∥}, (1.3)

Sg := {(x, y) ∈ Rn+m : ∥x∥ ≤ ∥y∥, aTx+ dTy = −1}. (1.4)

where max{∥a∥, ∥d∥} = 1. Whether S gets mapped to Sh or Sg depends on
whether the quadratic defining S is homogeneous or not. Thus, one of the
goals of this paper will be: using C as maximal Sh- and Sg-free sets of [18], to
find a monoid M such that C is Sh +M - or Sg +M -free and, subsequently,
strengthen the corresponding intersection cut.

Monoidal strengthening is also related to lifting [12,10,3,13]. The function ψ
is such that with it we obtain sequence independent lifting, i.e. we can apply
the strengthening to all integer variables simultaneously. However, in general,
there could be other lifting functions that produce better improvements than
ψ. Our final goal is to show that, choosing ϕ carefully, the ψ function we
obtain yields the best possible coefficient an integer variable can achieve. This
establishes that in our case there is unique lifting (see Section 2 for a overview).

Contributions Our main contributions are: (1) we show that the monoidal
strengthening framework does not produce any strengthening when S is de-
fined using a homogeneous quadratic; (2) in the non-homogeneous case, we
show an explicit monoid construction based on a maximal Sg-free set of [18]
which can be used for monoidal strengthening; (3) we show an explicit formula
for how to efficiently compute ψ(r) in practice; (4) we show that in our set-
ting there is unique lifting which, in particular, implies that ψ yields the best
coefficients in the strengthening of the intersection cut; and (5) we present
extensive computational results that show the impact of this strengthening
procedure.
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2 Monoidal strengthening and unique lifting

Let S be a closed set and f ∈ Rn such that f /∈ S. Let ϕ be a sublinear
function, and let C = {x ∈ Rn : ϕ(x − f) ≤ 1} be an S-free set. Given the
constraint f +

∑p
i=1 r

isi ∈ S with si ∈ R+ and ri ∈ Rn, the intersection cut
separating f is

∑p
i=1 ϕ(r

i)si ≥ 1.

Monoidal strengthening leverages the fact that some of the si are integer. The
idea is to take the relation f+

∑p
i=1 r

isi ∈ S and modify it in the following way.
Assume that all si are restricted to be integer. The above relation implies that
f +

∑p
i=1(r

i +mi)si ∈ S +
∑p

i=1misi. The points
∑p

i=1misi form a monoid
M = {m : m =

∑p
i=1misi, si ∈ Z+}. Thus, we obtain the new relation:

f +
∑p

i=1(r
i +mi)si ∈ S +M . If it turns out that C is still S +M free, then

we can use the function ϕ to generate a new cut. The above is summarized in
the following result.

Theorem 2.1 ([2] Theorem 1) Let M be a monoid such that C is S+M -
free and let I = {i ∈ [p] : si ∈ Z} be the index set of the integer variables.
Then, ∑

i/∈I

ϕ(ri)si +
∑
i∈I

inf
m∈M

ϕ(ri +m)si ≥ 1

is valid and dominates the intersection cut.

The burden of the above technique is to find a monoid M such that C stays
S+M -free. Note that, equivalently, we can find a monoidM such that C−M is
(possibly non-convex) S-free. Note that C−M is the union of the displacements
of C by the elements of −M . Thus, to start constructing a possible monoid
to use for strengthening we can start with the simpler problem of finding a
direction, r such that C−rZ+ is S-free (we follow this approach in Section 4).

Monoidal strengthening was introduced in [2]. In that paper, Balas and Jeroslow
show how to recover GMI (Gomory Mixed Integer) cuts [16] using monoidal
strengthening. For GMI cuts, the set S is Z and since S itself is a monoid (it
is a group), then one can apply monoidal strengthening, and recover the GMI
cuts, using M = Z. However, the main application of monoidal strengthen-
ing in [2] is to disjunctive cuts. Loosely speaking, they consider the following
“basic truncated” disjunctive set, S = {y ∈ Rp : yi ≥ bi,

∨
i yi ≥ 1}, with

bi < 1. As we will see in Theorem 3.1, monoidal strengthening is not applica-
ble when the S-free set is maximal and S is a cone, therefore, the condition
yi ≥ bi is needed for the application of monoidal strengthening. In such a set-
ting, C = {y ∈ Rp : yi ≤ 1} is a maximal S-free set that yields the standard
disjunctive cut and M = {m ∈ Rp : mi = (1 − bi)zi,

∑
i zi ≥ 0, zi ∈ Z} is a

monoid such that C −m is S-free for every m ∈M .
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Monoidal strengthening is also related to lifting. A common strategy for con-
structing a cut generating function for the infinite model [11],W (S) = {(x, y) :
f+

∑
r∈Rn rx(r)+

∑
r∈Rn ry(r) ∈ S, x(r) ≥ 0, y(r) ∈ Z+, x, y have finite support},

is to construct a cut generating function for the continuous set and then
lift it. Let C be an S-free set and let ϕ be a sublinear function such that
C = {x : ϕ(x− f) ≤ 1}. Then, (ϕ, ϕ) is a valid cut generating pair for W (S),
i.e.,

∑
r∈Rn ϕ(r)x(r)+

∑
r∈Rn ϕ(r)y(r) ≥ 1 is valid forW (S). IfM is a monoid

such that C is S +M free, and ψ(r) = infm∈M ϕ(r+m), then (ϕ, ψ) becomes
a valid pair. A nice property of ψ is that it is subadditive1. This implies that
with ψ we obtain sequence independent lifting, i.e., we can lift all integer vari-
ables at the same time. This is readily seen from Theorem 2.1, where in the
final cut ψ is applied to each integer variable.

In the case where S = Zn ∩ P where P is a polyhedron, a simple monoid M
that satisfies that C is S +M -free is M = Zn ∩ lin(conv(P )). This monoid
works because Zn ∩ lin(conv(P )) ⊆ S. Due to the simplicity of the monoid,
the function ψ is also known as trivial lifting [12,10,3,13]

However, the monoidal lifting function ψ is, in general, just one possible way
of lifting. We can define the best possible coefficient that a particular integer
variable can achieve, with the so-called lifting function. The lifting function is
given by

π(r) = sup

{
1− ϕ(s)

σ
: f + s+ σr ∈ S, σ ∈ Z≥1

}
.

In general, π is not subadditive so we do not have sequence independent lifting
with it [5]. When it is subadditive, we say that there is unique lifting, because
π dominates any other lifting. For the case S = Zn ∩ P it is well understood
when we have unique lifting [3]. Roughly speaking, there is a region Rϕ, called
the lifting region [10], which contains the origin and has non-empty interior,
such that π and all valid minimal2 liftings coincide with the continuous cut
generating function ϕ. Intuitively, this is saying that if r is short enough, then
the contribution of ry(r) inW (S) is independent, as far as lifting is concern, of
whether y(r) ∈ Z+ or y(r) ∈ R+. In [10] they show that if Rϕ+M = Rn, where
M = Zn ∩ lin(conv(P )), then there is unique lifting. The idea is that one can
apply monoidal strengthening to a minimal valid lifting π′ to show that, just
like the monoidal lifting function, π′(r +m) = π′(r). Thus, if Rϕ +M = Rn,
then for r ∈ Rn there are r0 ∈ Rϕ,m ∈ M such that r = r0 + m and so
π′(r) = π′(r0 +m) = π′(r0) = ϕ(r0). Hence all minimal valid liftings are the
same and we have unique lifting.

Unfortunately, as we will see in Section 4, the monoid that we construct does
not have a “periodic” structure that allows us to use a similar reasoning as

1 A function ψ is subadditive if ψ(x+ y) ≤ ψ(x) + ψ(y)
2 A cut generating function is called minimal if it is not point-wise dominated by another

cut generating function.
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above. To prove unique lifting in our setting, i.e., that we have sequence inde-
pendent lifting with π, we will prove that π is subadditive and we will achieve
this by applying the following result.

Lemma 2.1 Let M be a monoid such that C is S +M -free and

π1(r) = sup{1− ϕ(s) : f + s+ r ∈ S}.

If π1 is subadditive, then π = π1 and we have unique lifting.

Proof By definition π(r) = supσ∈Z≥1

π1(σr)
σ . Since, π1(r) ≤ supσ∈Z≥1

π1(σr)
σ ,

we always have that π1(r) ≤ π(r).

Now, given that π1 is subadditive, π1(σr) ≤ σπ1(r). Therefore,
π1(σr)

σ ≤ π1(r)
and we conclude that π(r) ≤ π1(r). Thus, π = π1.

It only remain to prove that π1 is subadditive, which we do by showing that
π1 = ψ in Section 6.

3 The homogeneous case: Sh

In this section, we analyze the case of Sh defined in (1.3) and show that the
monoidal strengthening framework does not produce any improvements when
the cuts are created using maximal Sh-free sets. The main reason behind this
fact is that Sh is a cone, and consequently every maximal Sh-free set is a
convex cone [7, Corollary 3]3; we show below why this is not a good setting for
monoidal strengthening. In fact, the results in this section apply to a generic
closed cone S and are stated with respect to such set.

As mentioned before, for a given S-free set C, we are interested in finding a
monoidM such that C−M is S-free. With the following results, we show that
in this setting M can be assumed to be a convex cone. We remind the reader
that cone(·) is the cone generated by a set, which may not be convex.

Proposition 3.1 Let M be a monoid. Then, cl cone(M) is a convex cone.

Proof Let m1,m2 ∈ M , and consider µ1, µ2 ∈ Q non-negative. We aim at
showing that

µ1m1 + µ2m2 ∈ cone(M).

3 This citation deals with a particular set S, but the proof can be easily extended to any
conic set S.
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Since µ1, µ2 are rational, we can take p ∈ N \ {0} such that pµ1, pµ2 ∈ N.
Then,

µ1m1 + µ2m2 =
1

p
(pµ1m1 + pµ2m2︸ ︷︷ ︸

w

)

Since M is a monoid, we have that w ∈ M . Thus, µ1m1 + µ2m2 ∈ cone(M).
Using density of the rationals we conclude that cl cone(M) is a convex cone.

Note that a convex cone is, in particular, a monoid. The next results shows
that one can consider cl cone(M) instead of M in the monoidal strengthening
setting.

Lemma 3.1 Let S be a closed cone and let C be a full-dimensional convex
S-free cone. If M is a monoid such that C −M is S-free, then cl cone(M) is
a monoid such that C − cl cone(M) is S-free.

Proof The fact that cl cone(M) is a monoid follows trivially from the previous
discussion. By contradiction, suppose C−cl cone(M) is not S-free. This implies
that there exists s ∈ S such that s ∈ int(C − cl cone(M)). Then, there exists
c ∈ int(C) and m̄ ∈ cl cone(M) such that s = c−m̄. Furthermore, we can take
m ∈ cone(M) sufficiently close to m̄ such that

c′ := c− m̄+m ∈ int(C).

Thus, we have s = c′ −m. Note that it must hold that m ̸= 0 as C is S-free.
Since m ∈ cone(M), we must have m = λm′ for some λ > 0 and m′ ∈ M .
This implies

s

λ
=
c′

λ
−m′.

Both S and C are cones, thus s′ := s/λ ∈ S and c′ := c/λ ∈ int(C). This
contradict the S-freeness of C −M .

The fact that we can restrict to monoids that are cones has the following
consequence when C is a maximal S-free set.

Theorem 3.1 Let S,C ⊆ Rn where S is a closed cone and C is a convex
maximal S-free set. Let M ⊆ Rn be monoid such that C −M is S-free, then
C −M = C. In particular, this implies that the cut obtained from monoidal
strengthening would be the same as the standard intersection cut obtained
through C.

Proof Since M is a monoid, 0 ∈ M and thus C ⊆ C − M . By Lemma
3.1 cl cone(M) is a monoid such that C − cl cone(M) is S-free. Note that
C − cl cone(M) is convex, and thus the maximality of C implies that C −
cl cone(M) ⊆ C. Since C −M ⊆ C − cl cone(M), we conclude C −M = C.
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The last theorem says that there is not much to be gained from the monoidal
strengthening framework when S is a cone. This negative property, nonethe-
less, has a positive effect in detecting “non-maximality” of an S-free set, as
stated in the next result.

Proposition 3.2 Let S be a closed cone and let C be a full dimensional closed
convex S-free cone. If there exists r /∈ −C such that C is S+cone(r)-free, then
C is not a maximal S-free set. Furthermore, C+cone(−r) is S-free and strictly
contains C.

Proof Suppose C + cone(−r) is not S-free and let x ∈ int(C + cone(−r)) ∩ S.
Then, x = y − λr for some y ∈ int(C) and λ > 0 ([19, Corollary 6.6.2]). This
implies that y = x+ λr ∈ S + cone(r), which is a contradiction with C being
S + cone(r)-free.

Since r /∈ −C, we conclude that C ⊊ C + cone(−r).

The next example illustrates an application of the last proposition, in a con-
nection with the work of [7].

Example 3.1 Consider the set S = {(a, b, c, d) ∈ R4 : ad = bc, a ≥ 0}. Al-
though this set does not fall into either the forms Sh or Sg which are our
main objects of interest, it is still a closed conic set to which the results of
this section apply. The set S is studied in [7], and appears when using lifted
variables Xi,j representing bilinear terms xixj . In this case, the lifted variables
must obviously satisfy

Xi,jXk,l = Xi,lXk,j .

Furthermore, if i = j, it must additionally hold that Xi,j ≥ 0.

Let Cθ = {(a, b, c, d) ∈ R4 : cos(θ)(a+d)+sin(θ)(b−c) ≥
√
(a− d)2 + (b+ c)2}.

In [7, Theorem 7], the authors show that Cθ is maximal S-free for specific val-
ues of θ; these values always satisfy cos(θ) = 0 or sin(θ) = 0.

Here, we prove that if θ is such that cos(θ) ̸= 0 and sin(θ) ̸= 0, then Cθ is not
maximal S-free. More specifically, we show that C ′

θ = Cθ + cone(e4) is S-free
and strictly contains Cθ, where e4 = (0, 0, 0, 1).

In virtue of Proposition 3.2, it suffices to show that −e4 /∈ −Cθ and that Cθ

is S + cone(−e4)-free. The fact that −e4 /∈ −Cθ can be easily verified as our
assumptions imply cos(θ) < 1, thus we focus on the second property.

Consider (a, b, c, d) ∈ int(Cθ), thus ad > bc. If a < 0 then (a, b, c, d) + λe4 ̸∈ S
∀λ, since the first component does not depend on λ. If a ≥ 0 then (a, b, c, d)+
λe4 ̸∈ S ∀λ ≥ 0 since

a(d+ λ) ≥ ad > bc.
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(a) Slices of S (blue) and Cθ (orange) (b) Slices of S (blue) and C′
θ (orange)

Fig. 3.1: Three-dimensional slices of S, Cθ and C′
θ in Example 3.1 given by a = 1/10.

Thus Cθ is S+cone(−e4)-free. Since −e4 ̸∈ −Cθ, Proposition 3.2 implies that
C ′

θ is S-free and strictly contains Cθ. In Figure 3.1 we show a 3-dimensional
slice of the 4-dimensional sets S and Cθ, for θ = π/4, showing how the S-free
was enlarged. We remark that one can actually show that C ′

θ is maximal S-
free, but in the interest of space we leave this proof to the reader, which is
based on the maximality criteria of [18]. Note that maximality is not seen in
Figure 3.1, since maximality is not preserved when taking slices.

4 The non-homogeneous case: Sg

In this case, the monoidal strengthening framework does produce improve-
ments. The intuition for our construction is as follows. Consider the maximal
S-free set C represented in Figure 4.1a. The set is maximal because it has two
exposing points [18], that is, the points of the facets of C that are tangent to
S. We see that a way of translate C such that the translation is S-free is by
moving the apex of C to a point not in S and to the left of the exposing points
(see Figure 4.1b). This is the basic idea behind our monoid construction, and
below we show how to formalize it.

4.1 A technical consideration for Sg

Before motivating the construction the monoid, we need to provide some de-
tails on the construction of maximal Sg-free presented in [18]. This construc-
tion starts from the maximal Sh-free set

Cλ = {(x, y) ∈ Rn+m : ∥y∥ ≤ λTx}, (4.1)
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(a) S (blue) with maximal S-free set C (or-
ange). In this case the two inequalities of C
intersect S.

(b) Set of points not in S and “to the left of
the exposing points” (green). Note that the
green region is not contained on the orange
region: see the top left and bottom left.

Fig. 4.1: Constuction of the monoid for a maximal S-free set.

where λ is a vector in the unit sphere, and then modifies it to account for the
hyperplane H = {(x, y) ∈ Rn+m : aTx+dTy = −1} (recall that Sg = Sh∩H).
Note that Cλ can be equivalently described as Cλ = {(x, y) ∈ Rn+m : βTy ≤
λTx ∀β ∈ D1} where D1 is the unit sphere of appropriate dimension. The

proof that Cλ is maximal Sh-free boils down to noting that for each β̂, the
vector (λ, β̂) ∈ Sh ∩Cλ is tight for the inequality β̂Ty ≤ λTx and for no other.
This means that each inequality indexed by β has an exposing point in Sh.

Moving to Sg, the set Cλ∩H is clearly Sg-free4, but it is not necessarily max-
imal. The maximal Sg-free constructed in [18] first identifies the inequalities
of Cλ for which an exposing point can be found in H and keeps them; these
exposing points are

− 1

aTλ+ dTβ
(λ, β)

and they expose the inequalities given by β such that ∥β∥ = 1 and aTλ+dTβ <
0. The inequalities in Cλ that correspond to β such that aTλ + dTβ ≥ 0
do not have such an exposing point and are relaxed adequately. Maximality
of the resulting set is shown using the exposing points above and, for each
relaxed inequality, a diverging sequence in Sg that approaches the inequality
indefinitely (an exposing sequence). This is due to the fact that these relaxed
inequalities may have never intersect Sg; we illustrate this procedure in Figure
4.2.

In our current monoid construction, we require that all exposing points of the
maximal Sg-free set are bounded. This requirement translates to aTλ+dTβ < 0
for all β with ∥β∥ = 1. This, in turn, reduces to ∥d∥ < −aTλ. Note that
this condition implies that Cλ is maximal Sg-free with respect to H [18].
Additionally, this implies that we can assume ∥a∥ = max{∥a∥, ∥d∥} = 1.

4 Note that Sg is contained on a halfspace, so Sg-freeness is with respect to the induced
topology in H.



Monoidal strengthening and unique lifting in MIQCPs 11

-4 -2 0 2 4

-25

-20

-15

-10

-5

0

5

(a) Sg (orange), Cλ (blue) and an exposing
sequence (red points) used to relax one of
the inequalities of Cλ.
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(b) Resulting maximal Sg-free set after one
of the facets of Cλ is relaxed. The vertical
facet does not intersect Sg .

Fig. 4.2: Plots illustrating how Cλ is modified to obtain a maximal Sg-free set. Figures
obtained from [18].

4.2 Monoid construction

Using the considerations of the previous section, we can formalize the notion
of “left of the exposing points”: we construct a halfspace that contains the
exposing points and the directions of lineality of Cλ ∩H as we want the apex
to be on one side of the halfspace. This hyperplane is given by {(x, y) ∈ Rn+m :
(a− λTaλ)Tx ≥ 0}.

When translating Cλ by a vectorm we can modifym by a vector in the lineality
space of Cλ without changing the translation. Thus, we restrict to vectors m
that live in a subspace that contains the exposing points and is orthogonal to
the lineality space of Cλ ∩H. This subspace is given by ⟨{λ, a}⟩ × Rm. Thus,
we have the following set representing the points “left of the exposing points”:

L = {(x, y) ∈ ⟨{λ, a}⟩×Rm : aTx+dTy = −1, ∥x∥ ≥ ∥y∥, (a−λTaλ)Tx ≥ 0}.
(4.2)

To obtain the translation we find the apex of Cλ∩H in the space ⟨{λ, a}⟩×Rm.
This point is given by

ν = (x0, 0) :=

(
−1

1− (λTa)2
a+

λTa

1− (λTa)2
λ, 0

)
. (4.3)

Thus, L−ν is a candidate to represent the translations of C that would result
in an Sg-free set. Recall that the translations we consider for C are given by
“minus the monoid” and that a monoid must contain the origin, therefore our
candidate for a monoid is M where

M = {(x, y) ∈ ⟨{λ, a}⟩ × Rm : aTx+ dTy = 0, ∥x− x0∥ ≥ ∥y∥, (4.4)

(a− λTaλ)Tx ≤ −1} ∪ {(0, 0)}.

We now state the necessary results for the correctness of our construction.
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Theorem 4.1 Let M be defined as in (4.4) with ∥d∥ < −λTa and ∥a∥ =
∥λ∥ = 1. The set M is a monoid.

Theorem 4.2 Let Sg and Cλ be defined as in (1.4) and (4.1) respectively,
and H = {(x, y) ∈ Rn+m : aTx + dTy = −1}. Let M be defined as in (4.4)
with ∥d∥ < −λTa and ∥a∥ = ∥λ∥ = 1. The set Cλ ∩H −M is Sg-free.

The proofs of these results are highly technical, thus, for the sake of readability
we have relegated them to Appendix A.

For the rest of the paper, we assume ∥d∥ < −λTa < 1 and ∥a∥ = ∥λ∥ = 1,
i.e., we are in the case where monoidal strengthening is actually possible.
Furthermore, we denote by Sg and Cλ the sets defined by (1.4) and (4.1),
respectively, and let H = {(x, y) ∈ Rn+m : aTx+ dTy = −1}.

5 Solving the monoidal strengthening problem

In order to strengthen the cut using Theorem 2.1 and the monoid constructed
in the previous section, we need to solve ψ(r) = infm∈M ϕ(r + m), where
ϕ is a sublinear function such that Cλ ∩ H = {z : ϕ(z − f) ≤ 1}. From
now on, λ = fx

∥fx∥ , where f is the point we want to separate, i.e., f /∈ Sg.

Furthermore, we restrict Cλ ∩H to ⟨{λ, a}⟩ ×Rm because any representation
of Cλ∩H is invariant in the directions of the lineality space of Cλ∩H, namely,
⟨{λ, a}⟩⊥ × {0}. Thus, we define C = Cλ ∩ H ∩ ⟨{λ, a}⟩ × Rm. Likewise, we
restrict all rays to ⟨{λ, a}⟩ × Rm.

We work with the so-called minimal representation of C − f .

Proposition 5.1 The minimal representation of C − f is

ϕ(x, y) =

{
sup∥β∥=1

βTy−λTx
λTfx−βTfy

if aTx+ dTy = 0 and x ∈ ⟨{λ, a}⟩
+∞ otherwise.

(5.1)

Proof See Appendix A.7.

The monoidal problem is equivalent to ψ(r) = inf{τ : ϕ(r+m) ≤ τ,m ∈M}.
In order to understand this problem better, we need to understand the set
{z : ϕ(z) ≤ τ}.

Proposition 5.2 Let ϕ be the minimal representation of C−f given in (5.1).
Then {z : ϕ(z) ≤ τ} = C − ν− τ(f − ν), where ν is defined in (4.3) (the apex
of Cλ ∩H in the space ⟨{λ, a}⟩ × Rm).
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(a) Line {l(τ) : τ > 0} (red) intersects L ∪
C (green and orange) at l(τ2) (red point)

(b) Line {l(τ) : τ > 0} (red) intersects L ∪
C (green and orange) at l(τ1) (red point)

Fig. 5.1: Solving the monoidal strengthening problem.

Proof See Appendix A.3.

Using the above proposition, the monoidal problem is equivalent to ψ(r) =
inf{τ : r +m ∈ C − ν − τ(f − ν),m ∈M}. The constraints r +m ∈ C − ν −
τ(f −ν) and m ∈M are equivalent to r+ν+ τ(f −ν) ∈ C−M , thus we have
that

ψ(r) = inf{τ : r + ν + τ(f − ν) ∈ C −M}. (5.2)

In other words, solving the monoidal strengthening problem reformulates to
finding the first intersection point between the line l(τ) = r + ν + τ(f − ν),
and the set C −M .

As shown in Proposition A.1, we have C −M = L ∪ C. Thus,

ψ(r) = inf{τ : l(τ) ∈ L ∪ C} = min{τ1, τ2}

where τ1 = inf{τ : l(τ) ∈ L} and τ2 = inf{τ : l(τ) ∈ C}. Note that τ2 corre-
sponds to the normal intersection cut coefficient ϕ(r). The following proposi-
tion shows how to evaluate ψ(r).

Proposition 5.3 Let τ̄ be the largest root of the univariate quadratic equation
∥lx(τ)∥2 = ∥ly(τ)∥2. If the root exists and l(τ̄) ∈ L, then ψ(r) = τ̄ . Otherwise,
ψ(r) = ϕ(r).

Proof See Appendix A.5

Figure 5.1a is an example where ψ(r) = ϕ(r). In this particular example, this
is due to the fact that ∥lx(τ)∥2 = ∥ly(τ)∥2 does not have roots. Figure 5.1b is
an example where ψ(r) is given by the largest root of ∥lx(τ)∥2 = ∥ly(τ)∥2.

In Section 7, we show how to explicitly compute ψ(r) when dealing with a
general quadratic constraint.
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Remark 5.1 If we choose ϕ as the gauge centered at f , i.e., ϕ(r) = inf{τ :
f + r

τ ∈ C, τ > 0}, instead of the minimal representation, it can be shown
that ψ(r) is equivalent to (5.2) but with the additional constraint τ > 0. This
results in a possibly weaker intersection cut and weaker strengthening.

6 Unique lifiting

In this section, we show that we have unique lifting. To show that we have
unique lifting using Lemma 2.1, we have to show that π1 is subadditive. As
mentioned at the end of Section 2, we do so by proving that π1 is equal to the
monoidal strengthening problem, i.e., π1 = ψ.

Recall that, for a ray r, the lifting function is given by

π(r) = sup

{
1− ϕ(s)

σ
: f + s+ σr ∈ Sg, σ ∈ Z≥1

}
,

where ϕ is the minimal representation of C−f , see Proposition 5.1. Evaluating
π(r) is equivalent to solving

π(r) = sup
{ τ
σ

: f + s+ σr ∈ Sg, ϕ(s) ≤ 1− τ, σ ∈ Z≥1

}
(6.1)

By Proposition 5.2, {z : ϕ(z) ≤ 1 − τ} = C − f + τ(f − ν). Using this
equivalence, the constraints f + s+ σr ∈ Sg and ϕ(s) ≤ 1− τ reformulate to
σr+ν+ τ(f −ν) ∈ Sg − (C−ν). Since C−ν = rec(C), (6.1) can be simplified
to

π(r) = sup
{ τ
σ

: σr + ν + τ(f − ν) ∈ Sg − rec(C), σ ∈ Z≥1

}
.

Then, looking at the problem with σ = 1 fixed, yields

π1(r) = sup {τ : r + ν + τ(f − ν) ∈ Sg − rec(C)} .

Evaluating π1 reduces to finding the largest intersection point between the line
r + ν + τ(f − ν) and the set Sg − rec(C).

After all this manipulations, we can see that the lifting problem π1(r) and
the monoidal problem ψ(r) have a similar structure. Indeed, we can show that
they are the same problem.

Theorem 6.1 The functions ψ and π1 are equal.

Proof We will need that

H \ (Sg − rec(C)) = ri(C −M) (6.2)
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which we proceed to show by contradiction. Assume that the intersection of
Sg − rec(C) and ri(C − M) is non-empty. Then, there exists s ∈ Sg and
r ∈ rec(C) such that s− r ∈ ri(C −M). This implies that

s ∈ ri(C −M) + r = ri(C + r −M) = ri(C −M),

which contradicts the Sg-freeness of C −M established in Theorem 4.2. This
proves the relation (6.2).

Let r ∈ Rn+m. Proposition 5.3 shows that ψ(r) is finite, so let τ∗ = ψ(r) =
inf {τ : l(τ) ∈ C −M}, which implies that l(τ∗) /∈ ri(C −M). To show that
τ∗ = sup {τ : l(τ) ∈ Sg − rec(C)}, we need to prove that l(τ∗) ∈ Sg − rec(C)
and l(τ∗+ϵ) /∈ Sg−rec(C) for all ϵ > 0. By (6.2), we have l(τ∗) ∈ Sg−rec(C).

It remains to prove that l(τ∗+ϵ) /∈ Sg−rec(C) which is equivalent to l(τ∗+ϵ) ∈
ri(C −M). Since l(τ∗ + ϵ) − l(τ∗) = ϵ(f − ν), f − ν ∈ ri(rec(C)), and ϵ > 0,
we have that l(τ∗ + ϵ) ∈ l(τ∗) + ri(rec(C)). Therefore, there exists ϵ̄ > 0 such
that Bϵ̄(0) + l(τ∗ + ϵ) ⊆ l(τ∗) + ri(rec(C)). Furthermore, l(τ∗) ∈ C − M ,
thus Bϵ̄(0) + l(τ∗ + ϵ) ⊆ C − M + ri(rec(C)) = C − M . This shows that
l(τ∗ + ϵ) ∈ ri(C −M).

Finally, we conclude that we have unique lifting by Lemma 2.1.

7 Monoidal strengthening for a general quadratic constraint

In this section, we present how to explicitly apply monoidal strengthening for
enforcing an arbitrary quadratic constraint. From now on, instead of looking
at S to be of the form Sg, we consider S to be defined by a general quadratic
constraint, i.e., S = {s ∈ Rp : sTQs + bTs + c ≤ 0} with Q ∈ Rp×p, b ∈ Rp

and c ∈ R. In [8] the authors show that S can be rewritten as

S = {s ∈ Rp : ∥x(s)∥2 − ∥y(s)∥2 + b̄Tz(s) + κ ≤ 0}

and for the non-homogeneous case, i.e., b̄ ̸= 0 or κ ̸= 0, they showed how to
write it in the form

S = {s ∈ Rp : ∥x̂(s)∥2 − ∥ŷ(s)∥2 ≤ 0, aTx̂(s) + dTŷ(s) = −1}.

The values of a and d depend on b̄ and κ. Since we need ∥d∥ < −λTa < 1
to apply monoidal strengthening, the transformations from [8] show that this
can only be achieved if b̄ = 05 and κ > 0.

5 This means that there are no purely linear variables which discards the application of
the monoidal strengthening developed in this paper for quadratic constraints coming from
the epigraph reformulation of the objective function.
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More specifically, in our implementation, we transform S using the eigenvalue
decomposition Q = V ΘV T. Let θi, i ∈ [p], be the eigenvalues of Q, and let
I+ = {i : θi > 0}, I− = {i : θi < 0} and I0 = {i : θi = 0} be the index
sets of the positive, negative and zero eigenvalues, respectively. We assume that
I+ = {1, . . . , |I+|}, I− = {|I+|+1, . . . , |I+|+|I−|}, and I0 = {|I+|+|I−|, . . . , p}.
Furthermore, denote by vi the i-th eigenvector of Q, that is, the i-th column
of V . Then, S can be rewritten as

S = {s ∈ Rp : ∥(x̂(s), ζ)∥2 − ∥ŷ(s)∥2 ≤ 0, aT(x(s), ζ) + dTy(s) = −1},

where a = −e−1, d = 0, and

x̂i(s) =

√
θi
κ
vTi (s+

b

2θi
), ∀i ∈ I+,

ŷi(s) =

√
−θi
κ
vTi (s+

b

2θi
), ∀i ∈ I−,

ẑi(s) =
1√
κ
vTi s, ∀i ∈ I0,

κ = c− 1

4

∑
i∈I+∪I−

(vTi b)
2

θi
.

Note that zi does not appear in the definition of S since b̄ = 0. Nonetheless,
we state it here so that the mapping T : s 7→ (x̂(s), ŷ(s), ẑ(s)) is invertible.

Furthermore, the hyperplane aT(x(s), ζ)+dTy(s) = −1 is equivalent to ζ = 1.
The maximal quadratic-free set is

C = {s ∈ Rp : ∥ŷ(s)∥ ≤ λT(x̂(s), 1)}.

Finally, denote by s̄ the point we want to separate, i.e., s̄ /∈ S. Then, λ =
(x̂(s̄),ζ)

∥(x̂(s̄),1)∥ = (x̂(s̄),1)
∥(x̂(s̄),1)∥ and the necessary condition λTa < 1 translates into

∥x̂(s̄)∥ > 0.

To solve the monoidal strengthening problem for a ray r, we need to find the
roots of the quadratic function ∥(x̂(s), 1)∥2 − ∥ŷ(s)∥2 along the line r + ν +
τ(s̄− ν) where ν denotes the apex of C. For this, we first need to find ν:

Proposition 7.1 The apex ν of C is

ν = − κ∑
j∈I+

θj(vTj (s̄+
b

2θj
))2

∑
j∈I+

vij(v
T
j (s̄+

b

2θj
))−

∑
j∈I+∪I−

vij
vTj b

2θj
.
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Therefore, to perform monoidal strengthening, we need to find the largest root
of the following quadratic function:

∥(x̂(r + ν + τ(s̄− ν)), 1)∥2 − ∥ŷ(r + ν + τ(s̄− ν))∥2

=
1

κ

∑
i∈I+

θi

(
vTi (r + ν + τ(s̄− ν) +

b

2θi
)

)2

+
1

κ

∑
i∈I−

θi

(
vTi (r + ν + τ(s̄− ν) +

b

2θi
)

)2

+ 1

= Aτ2 +Bτ +D

with coefficients

A =
∑

i∈I+∪I−

θi
(
vTi (s̄− ν)

)2
,

B = 2
∑

i∈I+∪I−

θi
(
vTi (s̄− ν)

)(
vTi (r + ν +

b

2θi
)

)
,

D =
∑

i∈I+∪I−

θi

(
vTi (r + ν +

b

2θi
)

)2

+ κ.

We can use Proposition 5.3 to find the cut coefficient ψ(r) by solving Aτ2 +
Bτ +D = 0 and computing the standard intersection cut coefficient ϕ(r). The
latter can also be done efficiently as shown in [8].

8 Computational Results

In this section, we show results of computational experiments testing the effi-
cacy of the monoidal strengthening procedure we propose. We embedded the
computation of the monoidal strengthening cut coefficients in SCIP 8.0 [6] as
a subroutine of the already implemented intersection cut generator. As the
underlying LP solver, we used CPLEX 12.10.0.0. For testing, we used a Linux
cluster of Intel Xeon CPU E5-2680 0 2.70GHz with 20MB cache and 64GB
main memory. The time limit in all experiments was set to two hours. The test
set we consider consists of the publicly available instances of the MINLPLib
[17] and QPLib [14]. We selected all non-convex instances with (mixed)-integer
constriants and at least one quadratic constraint of the correct case, leaving
us with 95 instances. Furthermore, we filtered out all instances that are either
infeasible, where no dual bound was found or where monoidal strengthen-
ing could not been applied. This leaves us with 63 instances. All experiments
are run with three different permutations for each instance. We treat every
instance-permutation pair as an individual instance, since permuting the con-
straints and variables of a problem formulation may considerably change the
solving process.

We consider two different settings that are both based on SCIP’s default
settings: icuts additionally generates the original intersection cuts, whereas
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Table 8.1: Summary of results for branch-and-bound experiments. Rows labeled [t, 7200]
consider instances where one of the settings took at least t seconds. Columns labeled relative
show the relative improvement of monoidal compared to icuts.

icuts monoidal relative

subset instances solved time nodes solved time nodes time nodes

all 189 113 221.87 5282 115 214.63 5321 0.97 0.97

[0, 7200] 115 113 22.81 936 115 21.56 883 0.95 0.94

[1, 7200] 83 81 67.62 2377 83 62.40 2184 0.92 0.92

[10, 7200] 81 79 72.54 2574 81 66.56 2341 0.92 0.91

[100, 7200] 23 21 724.66 186545 23 565.24 144747 0.78 0.78

[1000, 7200] 10 8 2475.04 631764 10 1252.96 307639 0.51 0.49

monoidal uses the strengthened cutting planes if possible. Furthermore, we
restrict icuts and monoidal to add at most 20 intersection cuts per quadratic
constraint. We found this to be the best performing setting compared to de-
fault SCIP.

Summarized results can be found in Table 8.1. monoidal consistently outper-
forms icuts with respect to solving time as well as number of nodes needed.
On the whole test set, the strengthened intersection cuts reduce both metrics
by around 3% while solving two more instances. This improvement increases
when looking at harder instances: On the hardest test set [1000, 7200] contain-
ing only instances for which at least one setting needs 1000 seconds or more,
this monoidal 49% less time and 51% less nodes.

A Missing proofs

A.1 Proof of Theorem 4.1: the set M is a monoid

As the title suggests, the main goal of this section is to prove that M , with M defined in
(4.4) is indeed a monoid.

Proof (Theorem 4.1) Due to the way this proof was originally developed, it will be slightly
more convenient to show that −M is a monoid, which is an equivalent statement.

To show that −M is a monoid, we take two vectors (xi, yi) ∈ −M i = 1, 2 and show that
their sum is in −M (if one of them is the origin, the result follows trivially). Let us recall
the definition of −M without the origin:

−M ̸=0 = {(x, y) ∈ ⟨{λ, a}⟩×Rm : aTx+dTy = 0, ∥x+x0∥ ≥ ∥y∥, (a−λTaλ)Tx ≥ 1}. (A.1)

where ∥d∥ < −λTa and ∥λ∥ = ∥a∥ = 1. The linear constraints in (A.1) are satisfied trivially
by the sum, hence in the following, we will focus on showing that ∥x1+x2+x0∥ ≥ ∥y1+y2∥.
We prove this by showing that the optimization problem

min
xi,yi

∥x1 + x2 + x0∥2 − ∥y1 + y2∥2

s.t. (xi, yi) ∈ −M ̸=0 i = 1, 2
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is non-negative. First, we expand the objective function:

∥x1 + x2 + x0∥2 − ∥y1 + y2∥2

=∥x1 + x0 + x2 + x0 − x0∥2 − ∥y1 + y2∥2

=∥x1 + x0∥2 + ∥x2 + x0∥2 + ∥x0∥2 + 2(x1 + x0)
T(x2 + x0)

− 2xT0 (x1 + x0)− 2xT0 (x2 + x0)− ∥y1∥2 − ∥y2∥2 − 2yT1 y2

≥2xT1x2 − 2yT1 y2 − ∥x0∥2

where the last inequality follows from the constraints ∥xi+x0∥ ≥ ∥yi∥ and (a−λTaλ)Txi ≥
1 ⇔ −xT0xi ≥ ∥x0∥2. Hence, showing that the above optimization problem is non-negative
is equivalent to proving that

min
xi,yi

xT1x2 − yT1 y2

s.t. (xi, yi) ∈ −M ̸=0 i = 1, 2
(P )

is bounded by 1
2
∥x0∥2.

We can always decompose yi = ωid + ρi where ρi is orthogonal to d. Furthermore, since
xi ∈ ⟨{a, λ}⟩, xi can be represented in terms of a and λ, i.e., xi = θia + ηiλ. In the
following, we will use the expansions of xi and yi to reformulate (P ). Using that ∥a∥ = 1,
the hyperplane in −M̸=0 becomes

0 = aTxi + dTyi = θi + ηiλ
Ta+ ωi∥d∥2.

Furthermore, noting that λTx0 = 0 and aTx0 = −1, we get

−xT0xi ≥ ∥x0∥2 ⇔ θi ≥ ∥x0∥2

and the nonlinear constraint in (A.1) expands to

0 ≥ ∥xi + x0∥2 − ∥yi∥2 = ∥xi∥2 + 2xT0xi + ∥x0∥2 − ω2
i ∥d∥2 − ∥ρi∥2

= θ2i + η2i + 2θiηiλ
Ta− 2θi + ∥x0∥2 − ω2

i ∥d∥2 − ∥ρi∥2.

Finally, replacing xi and yi in the objective of (P ) yields

xT1x2 − yT1 y2 = θ1θ2 + η1η2 + θ1η2λ
Ta+ θ2η1λ

Ta− ω1ω2∥d∥2 − ρT1ρ2.

To summarize, problem (P ) can be reformulated as

min
θi,ηi,ωi,ρi

θ1θ2 + η1η2 + θ1η2λ
Ta+ θ2η1λ

Ta− ω1ω2∥d∥2 − ρT1ρ2

s.t. 0 ≤ θ2i + η2i + 2θiηiλ
Ta− 2θi + ∥x0∥2 − ω2

i ∥d∥2 − ∥ρi∥2

∥x0∥2 ≤ θi

∥d∥2ωi = −θi − ηiλ
Ta

ρTi d = 0

In what follows, we consider a relaxed version of this problem by removing constraints
ρTi d = 0, which leaves us with the problem:

min
θi,ηi,ωi,ρi

θ1θ2 + η1η2 + θ1η2λ
Ta+ θ2η1λ

Ta− ω1ω2∥d∥2 − ρT1ρ2

s.t. 0 ≤ θ2i + η2i + 2θiηiλ
Ta− 2θi + ∥x0∥2 − ω2

i ∥d∥2 − ∥ρi∥2

∥x0∥2 ≤ θi

∥d∥2ωi = −θi − ηiλ
Ta

(Pexp)

and thus it suffices to show that the value of this optimization problem is ≥ 1
2
∥x0∥2 to prove

that the given set is a monoid. We leave this fact as a claim that we show in Corollary A.2.
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Claim Problem (Pexp) is lower bounded by 1
2
∥x0∥2.

In the subsequent sections, our main goal is to prove this last claim.

A.1.1 The case ∥d∥ > 0

We begin by showing that Problem (Pexp) is lower bounded by 1
2
∥x0∥2 in the case ∥d∥ > 0:

we assume this throughout this section.

Note that we have −2θi + ∥x0∥2 ≤ −∥x0∥2 ≤ 0 since ∥x0∥2 ≤ θi in (Pexp). Hence, by
dropping the term −2θi+∥x0∥2 in each of the nonlinear constraints, we relax the latter and
thus obtain a relaxation of (Pexp), namely problem (Prel):

min
θi,ηi,ωi,ρi

θ1θ2 + η1η2 + θ1η2λ
Ta+ θ2η1λ

Ta− ω1ω2∥d∥2 − ρT1ρ2

s.t. 0 ≤ θ2i + η2i + 2θiηiλ
Ta− ω2

i ∥d∥2 − ∥ρi∥2

∥x0∥2 ≤ θi

∥d∥2ωi = −θi − ηiλ
Ta.

(Prel)

Before showing the desired lower bound, we begin by showing that (Pexp) is simply bounded.
To do so, we will show that (Prel) is bounded, and for the latter, we first show the following
structural result.

Lemma A.1 The feasible region of (Prel) is convex.

Proof We begin by using the linear equality constraint involving ωi and replace θi =
−ηiλTa − ωi∥d∥2. This transforms the linear inequality constraints to ∥x0∥2 ≤ −ηiλTa −
ωi∥d∥2 and the nonlinear constraints to

0 ≤ (−ηiλTa− ωi∥d∥2)2 + η2i + 2(−ηiλTa− ωi∥d∥2)ηiλTa− ω2
i ∥d∥2 − ∥ρi∥2

= η2i (1− λTa2)− ω2
i ∥d∥2(1− ∥d∥2)− ∥ρi∥2

Convexity follows if ηi ≥ 0 for all (θi, ηi, ωi, ρi) ∈ Fi where

Fi = {(θi, ηi, ωi, ρi) : 0 ≤ θ2i + η2i + 2θiηiλ
Ta− ω2

i ∥d∥2 − ∥ρi∥2,

∥x0∥2 ≤ θi, ∥d∥2ωi = −θi − ηiλ
Ta}.

To show this, we prove that Fi ∩ {(θi, ηi, ωi, ρi) : ηi < 0} = ∅.

Let (θi, ηi, ωi, ρi) ∈ Fi with ηi < 0. Then, we can write the constraint 0 ≤ θ2i + η2i +

2θiηiλ
Ta− ω2

i ∥d∥2 − ∥ρi∥2 as√
ω2
i ∥d∥2(1− ∥d∥2) + ∥ρi∥2 ≤ −ηi

√
(1− λTa2). (A.2)

Using the linear constraint, we also have that 0 ≤ −ηiλTa − ωi∥d∥2. Multiplying this in-

equality by

√
1−λTa2

−λTa
≥ 0 and adding it to (A.2) yields

√
ω2
i ∥d∥2(1− ∥d∥2) + ∥ρi∥2 ≤

∥d∥2
√

1− λTa2

λTa
ωi.
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Squaring the above yields

ω2
i ∥d∥2(1− ∥d∥2) + ∥ρi∥2 ≤

∥d∥4(1− λTa2)

λTa2
ω2
i ,

which is equivalent to

ω2
i

(
∥d∥2(1− ∥d∥2)−

∥d∥4(1− λTa2)

λTa2

)
+ ∥ρi∥2 ≤ 0. (A.3)

Note that the coefficient of ω2
i satisfies

∥d∥2(1− ∥d∥2)−
∥d∥4(1− λTa2)

λTa2
= ∥d∥2(1− ∥d∥2 −

∥d∥2

λTa2
+ ∥d∥2)

= ∥d∥2(1−
∥d∥2

λTa2
)

=
∥d∥2

λTa2
(λTa2 − ∥d∥2) > 0

This and (A.3) implies that ωi = 0 and ρi = 0. But, then, the constraint 0 ≤ −ηiλTa−ωi∥d∥2
becomes 0 ≤ −ηiλTa, which implies that ηi ≥ 0 which contradicts the hypothesis that
ηi < 0. Thus, it follows that ηi ≥ 0 for all elements in Fi, showing that (Prel) is convex.

Lemma A.2 The optimization problem (Prel) is bounded.

Proof Since Lemma A.1 shows that the feasible region of (Prel) is convex, we have that
ηi ≥ 0. Thus, the nonlinear constraint 0 ≤ θ2i + η2i + 2θiηiλ

Ta − ω2
i ∥d∥2 − ∥ρi∥2 can be

reformulated to √
ω2
i ∥d∥2(1− ∥d∥2) + ∥ρi∥2 ≤ ηi

√
(1− λTa2).

Now, replace θi = −ηiλTa− ωi∥d∥2 in the objective function. This gives

θ1θ2 + η1η2 + θ1η2λ
Ta+ θ2η1λ

Ta− ω1ω2∥d∥2 − ρT1ρ2

= η1η2(λ
Ta2 + 1− 2λTa2) + ω1ω2(∥d∥4 − ∥d∥2)− ρT1ρ2

= η1η2(1− λTa2)− ∥d∥2ω1ω2(1− ∥d∥2)− ρT1ρ2.

Therefore, problem (Prel) can be equivalently stated as

min
ηi,ωi,ρi

η1η2(1− λTa2)− ∥d∥2ω1ω2(1− ∥d∥2)− ρT1ρ2

s.t.
√
ω2
i ∥d∥2(1− ∥d∥2) + ∥ρi∥2 ≤ ηi

√
(1− λTa2)

∥x0∥2 ≤ −ηiλTa− ωi∥d∥2.

To prove that the above problem is bounded, we define the vectors νi = (ρi, ∥d∥
√

1− ∥d∥2ωi).
Note that νT1 ν2 = ∥d∥2ω1ω2(1− ∥d∥2) + ρT1ρ2. By Cauchy-Schwarz, we have

νT1 ν2 ≤ ∥ν1∥∥ν2∥ =
√
ω2
1∥d∥2(1− ∥d∥2) + ∥ρ1∥2

√
ω2
2∥d∥2(1− ∥d∥2)

Using the constraint
√
ω2
i ∥d∥2(1− ∥d∥2) + ∥ρi∥2 ≤ ηi

√
(1− λTa2), we have that

νT1 ν2 ≤ η1η2(1− λTa2)

and therefore,
∥d∥2ω1ω2(1− ∥d∥2) + ρ1ρ2 ≤ η1η2(1− λTa2),

which shows that the problem is bounded by 0.
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Note that the above result shows a lower bound of 0 to the value of (Pexp), but we require
a stronger lower bound on this optimization problem. However, now that we know (Pexp)
is bounded, we can obtain more properties for it.

Lemma A.3 The following set has at least one extreme point

F = {(θ, η, ω, ρ) ∈ R3 × Rm | 0 ≤ θ2 + η2 + 2θηλTa− 2θ + ∥x0∥2 − ω2∥d∥2 − ∥ρ∥2,

∥x0∥2 ≤ θ, ∥d∥2ω = −θ − ηλTa}.

Moreover, all extreme points satisfy the constraint ∥x0∥2 ≤ θ with equality.

Proof We first argue that there is at least one extreme point. Indeed, using ∥x0∥2 ≤ θ we
have that F ⊆ F ′, with

F ′ = {(θ, η, ω, ρ) ∈ R3 × Rm | 0 ≤ θ2 + η2 + 2θηλTa− ω2∥d∥2 − ∥ρ∥2,

∥x0∥2 ≤ θ, ∥d∥2ω = −θ − ηλTa}

In the proof of Lemma A.1 we showed that F ′ is convex, moreover, we showed that η ≥ 0
which implies

F ′ ⊆ {(θ, η, ω, ρ) ∈ R3 × Rm |
√
ω2∥d∥2(1− ∥d∥2) + ∥ρ∥2 ≤ η

√
(1− λTa2),

∥x0∥2 ≤ θ, ∥d∥2ω = −θ − ηλTa}

Since ∥d∥ < 1 and we are assuming ∥d∥ ̸= 0, the nonlinear constraint defines a pointed cone,
which implies that F has an extreme point.

Now, by contradiction, let us assume that there is an extreme point (θ∗, η∗, ω∗, ρ∗) satisfying
∥x0∥2 < θ∗. We begin by reformulating the set F . Replacing θ = −ηλTa − ω∥d∥2 in the
quadratic constraint yields

0 ≤ (ηλTa+ ω∥d∥2)2 + η2 − 2ηλTa(ηλTa+ ω∥d∥2)− ω2∥d∥2 − ∥ρ∥2

+ 2(ηλTa+ ω∥d∥2) + ∥x0∥2

= η2(λTa2 + 1− 2λTa2) + ω2(∥d∥4 − ∥d∥2)− ∥ρ∥2 + 2ηλTa+ 2ω∥d∥2 + ∥x0∥2

= η2(1− λTa2)− ω2∥d∥2(1− ∥d∥2)− ∥ρ∥2 + 2ηλTa+ 2ω∥d∥2 + ∥x0∥2

=(1− λTa2)(η2 + 2η
λTa

1− λTa2
)− ∥d∥2(1− ∥d∥2)(ω2 + 2ω

1

1− ∥d∥2
)− ∥ρ∥2 + ∥x0∥2

Completing the squares yields

0 ≤ (1− λTa2)(η +
λTa

1− λTa2
)2 − ∥d∥2(1− ∥d∥2)(ω +

1

1− ∥d∥2
)2 − ∥ρ∥2

+ ∥x0∥2 −
λTa2

1− λTa2
+

∥d∥2

1− ∥d∥2

=(1− λTa2)(η +
λTa

1− λTa2
)2 − ∥d∥2(1− ∥d∥2)(ω +

1

1− ∥d∥2
)2 − ∥ρ∥2 + 1 +

∥d∥2

1− ∥d∥2

The latter equation follows since ∥x0∥2 = 1
1−λTa2 . Using the change of variables η̃ :=√

1− λTa2(η + λTa
1−λTa2 ) and ω̃ :=

√
∥d∥2(1− ∥d∥2)(ω + 1

1−∥d∥2 ), as well as defining the

constant c := 1 +
∥d∥2

1−∥d∥2 , the constraint writes as

0 ≤ η̃2 − ω̃2 − ∥ρ∥2 + c,
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giving us the equivalent set

F̃ := {(θ, η̃, ω̃, ρ) ∈ R3+m | 0 ≤ η̃2 − ω̃2 − ∥ρ∥2 + c, ∥x0∥2 ≤ θ,

ω̃∥d∥2√
∥d∥2(1− ∥d∥2)

−
∥d∥2

1− ∥d∥2
= −θ −

λTaη̃√
1− λTa2

+
λTa2

1− λTa2
}

Let us call (θ∗, η̃∗, ω̃∗, ρ∗) the transformed extreme point. Note that we are assuming
∥x0∥2 < θ∗, thus such extreme point must satisfy the quadratic constraint with equality.

Since c > 0, after replacing the value of θ given by the equality constraint onto the inequal-
ity, we can apply of [20, Lemma 3.5]6 to show that (θ∗, η̃∗, ω̃∗, ρ∗) satisfying ∥x0∥2 < θ∗

cannot be an extreme point. Hence, all extreme points must satisfy ∥x0∥2 = θ, proving the
statement.

The previous result provides the structure of extreme points of a set of type F , however, in
Problem (Pexp) we have two sets of that type. In order to handle this, we note that Problem
(Pexp) has the following form:

min
θi,ηi,ωi,ρi

(θ1, η1, ω1, ρ1)Q(θ2, η2, ω2, ρ2)
T

s.t (θi, ηi, ωi, ρi) ∈ Fi i = 1, 2

where Q is some matrix, and show the following result.

Lemma A.4 Consider a bounded, bilinear program of the form

min{xTAy : x ∈ P, y ∈ Q} (A.4)

with x ∈ Rn, y ∈ Rm, A ∈ Rn×m, P ⊆ Rn and Q ⊆ Rm. Furthermore, assume that both
convP and convQ have at least one extreme point. Then (A.4) has an optimal solution
(x∗, y∗) ∈ ext convP × ext convQ.

Proof Let (x̄, ȳ) be an optimal solution. We fix x = x̄ and optimize the resulting problem

min{x̄TAy : y ∈ Q} = min{x̄TAy : y ∈ convQ}.

The optimal solution of the above problem can be taken to be an extreme point y∗ of convQ
and its optimal value has to be equal to the value achieved by (x̄, ȳ). Finally, we repeat the
argument taking as solution (x̄, y∗) and fixing y instead of x. Thus, there exists an optimal
solution (x∗, y∗) to A.4 with (x∗, y∗) ∈ ext convP × ext convQ.

Corollary A.1 When ∥d∥ > 0, problem (Pexp) is lower bounded by 1
2
∥x0∥2.

Proof Lemma A.2 shows that (Prel) is bounded. Thus, it follows that (Pexp) is also bounded,
i.e. there exists an optimal solution. By Lemmas A.4 and A.3, we know that we can assume
an optimal solution satisfies ∥x0∥2 ≤ θi with equality. Thus, in the following we will assume
that ∥x0∥2 = θi.

6 In [20], the authors assume throughout that the linear constraints define a polytope,
which is not our setting. Nonetheless, this particular result does not need this assumption.
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Penalizing the nonlinear constraints with multipliers − 1
2
yields the objective

θ1θ2 + η1η2 + θ1η2λ
Ta+ θ2η1λ

Ta− ω1ω2∥d∥2 − ρ1ρ2

−
1

2
(θ21 + η21 + 2θ1η1λ

Ta− 2θ1 + ∥x0∥2 − ω2
1∥d∥2 − ∥ρ1∥2)

−
1

2
(θ22 + η22 + 2θ2η2λ

Ta− 2θ2 + ∥x0∥2 − ω2
2∥d∥2 − ∥ρ2∥2)

= −
1

2
(θ1 − θ2)

2 − λTa(θ1 − θ2)(η1 − η2)−
1

2
(η1 − η2)

2 +
∥d∥2

2
(ω1 − ω2)

2

+ ∥ρ1 − ρ2∥2 + θ1 + θ2 − ∥x0∥2.

Since a penalization produces a relaxation, it is enough to show that the penalized problem
is lower bounded by 1

2
∥x0∥2. This problem reads

min
θi,ηi,ωi,ρi

−
1

2
(θ1 − θ2)

2 − λTa(θ1 − θ2)(η1 − η2)−
1

2
(η1 − η2)

2

+
∥d∥2

2
(ω1 − ω2)

2 + ∥ρ1 − ρ2∥2 + θ1 + θ2 − ∥x0∥2

s.t. ∥x0∥2 = θi

∥d∥2ωi = −θi − ηiλ
Ta

Replacing θi and ωi gives

min
ηi,ρi

−
1

2
(η1 − η2)

2 +
λTa2

2∥d∥2
(η1 − η2)

2 + ∥ρ1 − ρ2∥2 + ∥x0∥2.

The coefficient of ( λTa2

2∥d∥2 − 1
2
)(η1 − η2)2 is positive since 0 < ∥d∥ < −λTa, that is, λTa2 −

∥d∥2 > 0. Therefore, the minimum of the above problem is ∥x0∥2 ≥ 1
2
∥x0∥2.

A.1.2 The case ∥d∥ = 0

In the previous section we showed that Problem (Pexp) is lower bounded by 1
2
∥x0∥2 when

∥d∥ > 0. For the case ∥d∥ = 0, we note that (Pexp) becomes:

min
θi,ηi,ωi,ρi

θ1θ2 + η1η2 + θ1η2λ
Ta+ θ2η1λ

Ta− ρT1ρ2

s.t. 0 ≤ θ2i + η2i + 2θiηiλ
Ta− ∥ρi∥2

∥x0∥2 ≤ θi

0 = −θi − ηiλ
Ta.

(A.5)

Now we take any d̃ ̸= 0 such that ∥d̃∥ < −λTa and leveraging that (A.5) does not depend
on ω, we can reformulate (A.5) as

min
θi,ηi,ωi,ρi

θ1θ2 + η1η2 + θ1η2λ
Ta+ θ2η1λ

Ta− ω1ω2∥d̃∥2 − ρT1ρ2

s.t. 0 ≤ θ2i + η2i + 2θiηiλ
Ta− ω2

i ∥d̃∥2 − ∥ρi∥2

∥x0∥2 ≤ θi

∥d̃∥2ωi = −θi − ηiλ
Ta

ωi = 0

Removing constraints ωi = 0 results in a problem of the type (Pexp) with a non-zero d
vector. We can directly obtain the following result.
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Corollary A.2 Problem (Pexp) is lower bounded by 1
2
∥x0∥2.

A.2 The set Cλ ∩H −M is Sg-free

Recall that Cλ = {(x, y) ∈ Rn+m : ∥y∥ ≤ λTx} and the apex of Cλ ∩H is (x0, 0) with

(x0, 0) :=

(
−1

1− (λTa)2
a+

λTa

1− (λTa)2
λ, 0

)
.

Note that that ∥x0∥2 = 1
1−λTa2 . We begin with the following auxiliary result.

Lemma A.5 The hyperplane −xT0x = 0 defines a cross section of Cλ, i.e., every point of
(x, y) ∈ Cλ can be written as (x, y) = (x0, 0) + τ((x̄, ȳ) − (x0, 0)) where (x̄, ȳ) ∈ Cλ with
−xT0 x̄ = 0 and τ ≥ 0.

Proof Let (x, y) ∈ Cλ. If (x, y) = (x0, 0) the result clearly holds. For the other cases, we
define f(t) := (x0, 0) + t((x, y) − (x0, 0)). We begin by noting that f(t) ∈ Cλ for t ≥ 0:
indeed,

λTfx(t) = (1− t)λTx0 + tλTx ≥ t∥y∥ = ∥fy(t)∥
where we used that (x, y) ∈ Cλ and that λTx0 = 0. Thus, if we are able to show that there
exist a t∗ > 0 such that −(x0, 0)f(t∗) = 0 we are done, since in that case

(x, y) = (x0, 0) +
1

t∗
(f(t∗)− (x0, 0))

and we can define τ = 1/t∗ and (x̄, ȳ) = f(t∗). Note that

−x0fx(t) = −∥x0∥2 + t(∥x0∥2 − xT0x),

therefore such t∗ > 0 exists if and only if ∥x0∥2 − xT0x > 0. Replacing x0 by its definition
and using that 1− λTa2 > 0 yields

∥x0∥2 − xT0x > 0 ⇔ aTx− λTaλTx > −1.

Recall that ∥d∥ < −λTa. Since (x, y) ∈ Cλ by assumption, we have ∥y∥ ≤ λTx, thus
−λTaλTx > ∥d∥∥y∥. Furthermore, we can rewrite aTx = −1− dTy. Then,

aTx− λTaλTx > −1− dTy + ∥d∥∥y∥ ≥ −1,

where the latter inequality follows from Cauchy-Schwarz. This concludes the proof.

We are now ready to state the proof of Theorem 4.2, i.e., that Cλ ∩H−M is Sg-free. Much
like in the proof of Theorem 4.1, there will be an intermediate claim that we leave for a
subsequent section.

Proof (Theorem 4.2) To show that Cλ ∩H −M is Sg-free, we show that the translation
Cλ ∩ H + m is Sg-free for all m ∈ −M . Since this is clearly true for m = 0, we assume
that m ̸= 0. From the definition of M , recall that m ∈ ⟨{λ, a}⟩ × Rm. Lemma A.5 shows
that every point of Cλ can be written as (x0, 0) + τ((x, y)− (x0, 0)) where (x, y) ∈ Cλ and
−xT0x = 0. Using this result, we show that if (mx,my) ∈ −M , then the quadratic function
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∥x∥2 − ∥y∥2 restricted to the line (mx,my) + (x0, 0) + τ((x, y)− (x0, 0)) has all its roots in
(−∞, 0]. This implies that Cλ −M is Sg-free.

Let us introduce (x̄, ȳ) := (mx + x0,my). Note that since m ̸= 0, (x̄, ȳ) belongs to the set
L = {(x, y) ∈ ⟨{λ, a}⟩ × Rm | ∥x∥ ≥ ∥y∥,−xT0x ≥ 0, aTx + dTy = −1}. The quadratic
restricted to the line is given by ∥x̄+ τ(x− x0)∥2 − ∥ȳ + τy∥2. Expanding this yields,

∥x̄+ τ(x− x0)∥2 − ∥ȳ + τy∥2

= ∥x̄∥2 + τ2∥x− x0∥2 + 2τx̄T(x− x0)− ∥ȳ∥2 − τ2∥y∥2 − 2τ ȳTy

= τ2(∥x− x0∥2 − ∥y∥2) + 2τ(x̄T(x− x0)− ȳTy) + ∥x̄∥2 − ∥ȳ∥2

≥ τ2(∥x− x0∥2 − ∥y∥2) + 2τ(x̄T(x− x0)− ȳTy). (A.6)

The inequality follows from ∥x̄∥ ≥ ∥ȳ∥ since (x̄, ȳ) ∈ L.

Note that ∥x−x0∥−∥y∥ ≥ λT(x−x0)−∥y∥ = λTx−∥y∥ ≥ 0, and thus ∥x−x0∥2−∥y∥2 ≥ 0.
Due to the this, the roots of (A.6) enclose the roots of ∥x̄+τ(x−x0)∥2−∥ȳ+τy∥2. Therefore,
it is enough to prove that the roots of (A.6) are in (−∞, 0].

One of the roots is clearly 0, and the other is

−2
x̄T(x− x0)− ȳTy

∥x− x0∥2 − ∥y∥2
.

Hence, to show that this root is negative, we need to prove that x̄T(x− x0)− ȳTy ≥ 0. This
translates to showing that the optimization problem

min
x̄,ȳ,x,y

x̄T(x− x0)− ȳTy

s.t. ∥x̄∥2 − ∥ȳ∥2 ≥ 0

aTx̄+ dTȳ = −1

− xT0 x̄ ≥ 0

(λTx)2 − ∥y∥2 ≥ 0

aTx+ dTy = −1

λTx ≥ 0

(Proot)

is non-negative.

Recall that we can restrict to vectors that live in a subspace orthogonal to the lineality space
of Cλ ∩ H. This implies that we can write x̄ = θ̄a + η̄λ, x = θa + ηλ. We can also write
ȳ = ω̄d+ ρ̄ and y = ωd+ ρ.

Since xT0x = 0 together with the fact that xT0a = −1 and xT0λ = 0, we get x = ηλ. Replacing
the variables with its decompositions in the objective as well as in the constraints yields the
equivalent expanded problem

min
θ̄,η̄,ω̄,ρ̄,η,ω,ρ

η̄η − ω̄ω∥d∥2 − ρ̄ρ+ θ̄ηλTa+ θ̄

s.t. θ̄2 + η̄2 + 2θ̄η̄λTa− ω̄2∥d∥2 − ∥ρ̄∥2 ≥ 0

θ̄ + η̄λTa+ ω̄∥d∥2 = −1

θ̄ ≥ 0

η2 − ω2∥d∥2 − ∥ρ∥2 ≥ 0

ηλTa+ ω∥d∥2 = −1

η ≥ 0.

(P exp
root)
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The rest of the proof relies on the following claim, whose correctness is shown in Corol-
lary A.3.

Claim Problem (P exp
root) is bounded. Moreover, we can assume that an optimal solution

satisfies θ̄ = 0.

We now show that (P exp
root) ≥ 0 by building a relaxation such that, when requiring θ̄ = 0, has

a non-negative optimal solution. Let us build a penalized objective using multipliers − 1
2
for

each nonlinear constraint of (P exp
root):

η̄η − ω̄ω∥d∥2 − ρ̄ρ+ θ̄ηλTa+ θ̄

−
1

2

(
θ̄2 + η̄2 + 2θ̄η̄λTa− ω̄2∥d∥2 − ∥ρ̄∥2

)
−

1

2

(
η2 − ω2∥d∥2 − ∥ρ∥2

)
=−

1

2
(η − η̄)2 +

1

2
∥d∥2(ω − ω̄)2 +

1

2
∥ρ− ρ̄∥2 −

θ̄2

2
+ θ̄ηλTa− θ̄η̄λTa+ θ̄

We replace the objective function in (P exp
root) by the above aggregation, drop the nonlinear

constraints and replace θ̄ = 0. This yields

min
η̄,ω̄,ρ̄,η,ω,ρ

−
1

2
(η − η̄)2 +

1

2
∥d∥2(ω − ω̄)2 +

1

2
∥ρ− ρ̄∥2

s.t. η̄λTa+ ω̄∥d∥2 = −1

ηλTa+ ω∥d∥2 = −1

η ≥ 0.

(P rel
root)

As mentioned above, since we can assume θ̄ = 0 in an optimal solution of (P exp
root), showing

that (P rel
root) ≥ 0 suffices.

By solving the linear constraints for η̄ = − 1
λTa

(ω̄∥d∥2 + 1) and η = − 1
λTa

(ω∥d∥2 + 1) and

replacing the variables in the objective of (P rel
root) gives

−
1

2
(η − η̄)2 +

1

2
∥d∥2(ω − ω̄)2 +

1

2
∥ρ− ρ̄∥2

=−
∥d∥4

2λTa2
(ω − ω̄)2 +

1

2
∥d∥2(ω − ω̄)2 +

1

2
∥ρ− ρ̄∥2

=
∥d∥2

2
(1−

∥d∥2

λTa2
)(ω − ω̄)2 +

1

2
∥ρ− ρ̄∥2.

Since
∥d∥2

λTa2 < 1, we have that
∥d∥2
2

(1 − ∥d∥2

λTa2 )(ω − ω̄)2 + 1
2
∥ρ − ρ̄∥2 ≥ 0, proving that

(P rel
root) ≥ 0 and therefore also (P exp

root) ≥ 0 This concludes the proof that that the set
Cλ ∩H −M is Sg-free.

A.2.1 Auxiliary results

The purpose of the following results is to show that Problem (P exp
root) is bounded and that

we can assume that an optimal solution satisfies θ̄ = 0, which was used in the proof in
Appendix A.2.
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Lemma A.6 The optimization problem (P exp
root) is bounded.

Proof First, consider the change of variables θ̂ = θ̄+ 1
1−λTa2 and η̂ = η̄− λTa

1−λTa2 . Replacing

these in transforms (P exp
root) into the equivalent problem

min
θ̂,η̂,ω̄,ρ̄,η,ω,ρ

η̂η − ω̄ω∥d∥2 − ρ̄ρ+ θ̂ηλTa+ θ̂ −
1

1− λTa

s.t. θ̂2 + η̂2 − ω̄2∥d∥2 − ∥ρ̄∥2 + 2λTaθ̂η̂ − 2θ̂ −
λTa2

(1− λTa2)2
≥ 0

θ̂ + η̂λTa+ ω̄∥d∥2 = 0

θ̂ ≥ ∥x0∥2

η2 − ω2∥d∥2 − ∥ρ∥2 ≥ 0

ηλTa+ ω∥d∥2 = −1

η ≥ 0.

Since θ̂ ≥ ∥x0∥2, we have that−2θ̂− λTa2

(1−λTa2)2
≤ 0 and we can relax the nonlinear constraint

in the previous optimization problem to obtain

min
θ̂,η̂,ω̄,ρ̄,η,ω,ρ

η̂η − ω̄ω∥d∥2 − ρ̄ρ+ θ̂ηλTa+ θ̂ −
1

1− λTa

s.t. θ̂2 + η̂2 + 2λTaθ̂η̂ − ω̄2∥d∥2 − ∥ρ̄∥2 ≥ 0

θ̂ + η̂λTa+ ω̄∥d∥2 = 0

θ̂ ≥ ∥x0∥2

η2 − ω2∥d∥2 − ∥ρ∥2 ≥ 0

ηλTa+ ω∥d∥2 = −1

η ≥ 0.

(Pconv)

In (Pconv) we can analyze the feasible region of two sets of variables separately. The con-
straints involving the variables (η, ω, ρ) clearly define a convex region: since η ≥ 0, the
nonlinear constraint defines a second order cone. On the other hand, the convexity of the
constraints involving variables (θ̂, η̂, ω̄, ρ̄) follows from the proof of Lemma A.2. Thus, the
feasible region of (Pconv) is convex.

In particular, we obtain that η̂ ≥ 0 and the first nonlinear constraint can be reformulated
as √

ω̄2∥d∥2(1− ∥d∥2) + ∥ρ̄i∥2 ≤ η̂
√

(1− λTa2). (A.7)

Now, replacing θ̂ = −η̂λTa− ω̄∥d∥2 in the objective function yields

η̂η − ω̄ω∥d∥2 − ρ̄ρ+ θ̂ηλTa+ θ̂ −
1

1− λTa

=η̂η(1− λTa2)− ω̄η∥d∥2λTa− η̂λTa− ω̄∥d∥2 − ω̄ω∥d∥2 − ρ̄ρ+
1

1− λTa

=η̂η(1− λTa2)− ω̄ω∥d∥2(1− ∥d∥2)− ρ̄ρ− η̂λTa+
1

1− λTa
.

The last equality is obtained by replacing the constraint η = − 1
λTa

(1+ω∥d∥2) in ω̄η∥d∥2λTa.
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As in the proof of Lemma A.2, consider the vectors ν = (ρ, ∥d∥
√

1− ∥d∥2w) and ν̄ =

(ρ̄, ∥d∥
√

1− ∥d∥2ω̄). By Cauchy-Schwarz, we have

ν̄Tν = ω̄ω∥d∥2(1− ∥d∥2) + ρ̄ρ

≤
√
ω̄2∥d∥2(1− ∥d∥2) + ∥ρ̄∥2

√
ω2∥d∥2(1− ∥d∥2) + ∥ρ∥2

≤ η̂
√

1− λTa2
√
ω2∥d∥2(1− ∥d∥2) + ∥ρ∥2 (A.8)

where the last inequality follows from (A.7). Since ω2∥d∥2 = ω2∥d∥2(1 − ∥d∥2) + ω2∥d∥4
together with the fact that ηλTa + ω∥d∥2 = −1 ⇔ ω2∥d∥4 = (ηλTa + 1)2, the nonlinear
constraint η2 − ω2∥d∥2 − ∥ρ∥2 ≥ 0 can be reformulated to√

ω2∥d∥2(1− ∥d∥2) + ∥ρ∥2 ≤
√
η2 − (ηλTa+ 1)2.

Since η̂ ≥ 0, we can use this in (A.8) to obtain

ν̄Tν ≤ η̂
√

1− λTa2
√
η2 − (ηλTa+ 1)2,

Hence, the objective function of (Pconv) can be lower bounded by

η̂η(1− λTa2)− ω̄ω∥d∥2(1− ∥d∥2)− ρ̄ρ− η̂λTa+
1

1− λTa

≥ η̂η(1− λTa2)− η̂
√

1− λTa2
√
η2 − ω2∥d∥4 − η̂λTa+

1

1− λTa

= η̂

(
η(1− λTa2)− λTa−

√
1− λTa2

√
η2 − (ηλTa+ 1)2

)
+

1

1− λTa
.

If we show that η(1 − λTa2) − λTa −
√

1− λTa2
√
η2 − (ηλTa+ 1)2 ≥ 0, we obtain that

(Pconv) is lower-bounded by 0. This condition is equivalent to

η(1− λTa2)− λTa
?
≥

√
1− λTa2

√
η2 − (ηλTa+ 1)2

⇔ (η(1− λTa2)− λTa)2
?
≥ (1− λTa2)(η2 − (ηλTa+ 1)2)

⇔ η2(1− λTa2)2 − 2ηλTa(1− λTa2) + λTa2
?
≥ (1− λTa2)(η2(1− λTa2)− 2ηλTa− 1)

⇔ λTa2
?
≥ −1 + λTa2

⇔ 0
?
≥ −1.

This shows that (P exp
root) ≥ (Pconv) ≥ 0, concluding the proof.

Corollary A.3 Problem (P exp
root) is bounded. Moreover, we can assume that an optimal

solution satisfies θ̄ = 0.

Proof Lemma A.6 shows that the problem is bounded thus an optimum exists. Furthermore,
by Lemma A.4 we know that the optimum must be attained at an extreme point of the
feasible region.

To show that an extreme point must satisfy the constraint θ̄ ≥ 0 with equality, we note that
the following set of inequalities in (P exp

root)

θ̄2 + η̄2 + 2θ̄η̄λTa− ω̄2∥d∥2 − ∥ρ̄∥2 ≥ 0

θ̄ + η̄λTa+ ω̄∥d∥2 = −1

θ̄ ≥ 0
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have the same structure of the set in Lemma A.3. Using this result, we can easily see that
θ̄ = 0 in an extreme point.

A.3 Proof of Proposition 5.2

Proposition 5.2 Let ϕ be the minimal representation of C − f given in (5.1). Then {z :
ϕ(z) ≤ τ} = C − ν − τ(f − ν), where ν is defined in (4.3) (the apex of Cλ ∩H in the space
⟨{λ, a}⟩ × Rm).

Proof We first show that {z : ϕ(z) ≤ τ} ⊆ C−ν−τ(f−ν). Let z be such that ϕ(z) ≤ τ . We
have to show that there exists a z̄ ∈ C with z = z̄−ν−τ(f−ν). Choose z̄ = z+ν+τ(f−ν).
It is left to prove that z̄ ∈ C, that is, ϕ(z̄ − f) ≤ 1:

ϕ(z̄ − f) = ϕ(z + (1− τ)(ν − f))

≤ ϕ(z) + ϕ((1− τ)(ν − f))

≤ τ + ϕ((1− τ)(ν − f)),

where the first inequality follows from the sublineality of ϕ as shown in Proposition 5.1 and
the second inequality follows from the hypothesis ϕ(z) ≤ τ . If ϕ(α(ν − f)) = αϕ(ν − f) for
arbitrary α ∈ R (not only α > 0), then ϕ(z̄ − f) ≤ 1 follows immediately since the apex ν
is on the boundary of C and therefore ϕ(ν − f) = 1. We have

ϕ(α(ν − f)) = sup
∥β∥=1

α
−βTfy − λT(x0 − fx)

λTfx − βTfy

= sup
∥β∥=1

α

(
λTfx − βTfy

λTfx − βTfy
+

−λTx0
λTfx − βTfy

)
= αϕ(ν − f).

The latter equation follows from λTx0 = 0. Thus, ϕ(z̄ − f) ≤ 1 and so z̄ ∈ C.

Now, we show the other inclusion, i.e., C − ν − τ(f − ν) ⊆ {z : ϕ(z) ≤ τ}. Let z ∈
C − ν − τ(f − ν), then there exists a z̄ ∈ C such that z = z̄ − ν − τ(f − ν). Since

ϕ(z) = ϕ(z̄ − ν − τ(f − ν))

= ϕ(z̄ − f + (τ − 1)(ν − f))

≤ ϕ(z̄ − f) + (τ − 1)ϕ(ν − f)

≤ 1 + τ − 1 = τ,

it holds that z ∈ {z : ϕ(z) ≤ τ}. This proves the proposition.

A.4 Proof of C −M = L ∪ C

Proposition A.1 It holds that C −M = L ∪ C.

Proof Recall that

L = {(x, y) ∈ ⟨{λ, a}⟩ × Rm : aTx+ dTy = −1, ∥x∥ ≥ ∥y∥, (a− λTaλ)Tx ≥ 0}.
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First, we show that C−M ⊆ L∪C. Let (x̄, ȳ) ∈ C−M . There exists (x, y) ∈ C and m ∈M
such that (x̄, ȳ) = (x, y)−m. We need to show that (x̄, ȳ) ∈ L ∪ C.

Observe that if m = 0, then (x̄, ȳ) ∈ C and we are done. Therefore, we assume m ̸= 0.

We now show that (x̄, ȳ) ∈ L. It trivially holds that aTx̄+dTȳ = −1. Since C−M is Sg-free
by Theorem 4.2, we have that ∥x̄∥ ≥ ∥ȳ∥. Lastly, it holds that

(a− λTaλ)Tx̄ = (a− λTaλ)Tx− (a− λTaλ)Tmx

≥ (a− λTaλ)Tx+ 1.

As proven in the proof of Lemma A.5, (a − λTaλ)Tx ≥ −1 for all x ∈ C. This shows that
the constraint (a− λTaλ)Tx̄ ≥ 0 is satisfied and therefore (x̄, ȳ) ∈ L.

Now, we show that L ∪ C ⊆ C −M . Let (x̄, ȳ) ∈ L, since the case (x̄, ȳ) ∈ C is trivial. To
show that (x̄, ȳ) ∈ C −M , we have to show that there exist (x, y) ∈ C and m ∈ −M with
(x̄, ȳ) = (x, y) +m. We choose m := (x̄, ȳ) − ν ∈ L − ν = −M and (x, y) := ν ∈ C. This
concludes the proof.

A.5 Proof of Proposition 5.3

Proposition 5.3 Let τ̄ be the largest root of the univariate quadratic equation ∥lx(τ)∥2 =
∥ly(τ)∥2. If the root exists and l(τ̄) ∈ L, then ψ(r) = τ̄ . Otherwise, ψ(r) = ϕ(r).

Proof Recall that ψ(r) = min{inf{τ : l(τ) ∈ L}, ϕ(r)}. In order to prove the proposition,
we need to see how inf{τ : l(τ) ∈ L} compares with ϕ(r). To do this, we study the problem
inf{τ : l(τ) ∈ L}.

First, notice that if the infimum exists, then it is in the relative boundary of L. From the
definition of L (see (4.2)) it is easy to see that

L ⊆ R := {(x, y) ∈ ⟨{λ, a}⟩ × Rm : aTx+ dTy = −1, (a− λTaλ)Tx ≥ 0}.

Thus, inf{τ : l(τ) ∈ L} ≥ inf{τ : l(τ) ∈ R} and it is enough to prove that inf{τ : l(τ) ∈ R}
exists. We have that

(a− λTaλ)Tlx(τ) = (a− λTaλ)T(rx + x0 + τ(fx − x0))

= (a− λTaλ)T(rx + x0) + τ,

where the last equality follow from (a−λTaλ)Tfx = 0 and (a−λTaλ)Tx0 = −1. This shows
that there exists τ0 such that if τ ≤ τ0 then (a− λTaλ)Tlx(τ) < 0. That is, l(τ) /∈ R for all
τ ≤ τ0 and so inf{τ : l(τ) ∈ R} exists.

Let τ1 = inf{τ : l(τ) ∈ L}. There are two cases, depending on which part of the relative
boundary of L l(τ1) is located.

Case 1 ∥lx(τ1)∥ = ∥ly(τ1)∥ and (a− λTaλ)Tlx(τ1) ≥ 0.
We proceed to show that τ1 corresponds to the largest root of ∥lx(τ)∥2 = ∥ly(τ)∥2 and that
ψ(r) = τ1. This proves the first statement of the proposition.

We start by showing that τ1 ≤ ϕ(r). Assume, by contradiction, that ϕ(r) < τ1. Then,
τ2 = ϕ(r) is such that l(τ2) ∈ C. However, since f − ν ∈ ri(rec(C)), we have that for every



32 Antonia Chmiela et al.

τ > τ2, l(τ) ∈ ri(C). To see this, recall that l(τ) = r + ν + τ(f − ν). If τ > τ2, then
l(τ) = l(τ2) + (τ − τ2)(f − ν) ∈ C + ri(rec(C)) ⊆ ri(C). In particular, l(τ1) ∈ ri(C), which
is a contradiction with the fact that l(τ1) ∈ Sg and C is Sg-free.

We now show that τ1 is the largest root of the quadratic equation ∥lx(τ)∥2 = ∥ly(τ)∥2.
Since l(τ1) ∈ L and L ⊆ C − M (see Proposition A.1), we have that l(τ1) ∈ C − M .
Similar to the argument above, l(τ1 + ϵ) = l(τ1) + ϵ(f − ν) ∈ C −M + ri(rec(C)), for every
ϵ > 0. Observe that C − M + ri(rec(C)) ⊆ ri(C − M). To see this, let (x, y) ∈ C,m ∈
M, (z, w) ∈ ri(rec(C)) and let ϵ̄ > 0 small enough such that (z, w) + Bϵ̄((0, 0)) ⊆ rec(C).
Then, (x, y)−m+ (z, w) +Bϵ̄((0, 0)) ⊆ C −M , i.e., (x, y)−m+ (z, w) ∈ ri(C −M).

Therefore, l(τ1 + ϵ) ∈ ri(C −M), for every ϵ > 0. Thus, the equation (on ϵ) ∥lx(τ1 + ϵ)∥2 =
∥ly(τ1 + ϵ)∥2 cannot have a positive root, since otherwise l(τ1 + ϵ) ∈ Sg contradicting the
fact that C−M is Sg-free as shown in Theorem 4.2. This implies that there is no root larger
than τ1, i.e., τ1 is the largest root.

Case 2 ∥lx(τ1)∥ > ∥ly(τ1)∥ and (a− λTaλ)Tlx(τ1) = 0.
We proceed to show that τ1 > ϕ(r), which shows the second claim and proves the proposi-
tion. It is enough to show that l(τ1) ∈ riC, since then ϕ(r) = inf{τ : l(τ) ∈ C} < τ1.

Let (x, y) = l(τ1). We have to show that ∥y∥ < λTx. Given that (x, y) ∈ L ⊆ ⟨{λ, a}⟩×Rm,
(x, y) can be rewritten as x = θ̄a + θλ and y = ωd + ρ with θ̄, θ, ω ∈ R and ρTd = 0. The
condition (a − λTaλ)Tx = 0 then implies that θ̄ = 0. We thus need to prove that ∥y∥ < θ.
Notice that the assumption ∥x∥ > ∥y∥ is equivalent to |θ| > ∥y∥, so it suffices to show that
θ ≥ 0.

Expanding x and y in the constraint aTx + dTy = −1, yields λTaθ + ω∥d∥2 = −1. Solving

for θ yields θ = − 1+ω∥d∥2

λTa
. Note that θ can be described as an increasing, linear function of

ω, i.e., θ(ω) = − 1+ω∥d∥2

λTa
. Showing that θ(ω) ≥ 0 for the smallest possible ω is then enough

to prove θ ≥ 0.

Squaring the constraint |θ| > ∥y∥ and expanding the definitions we get the following con-
straint on ω:

∥d∥2(∥d∥2 − λTa2)ω2 + 2∥d∥2ω + (1− λTa2∥ρ∥2) > 0.

Note that ∥d∥2(∥d∥2 −λTa2) < 0, so the left-hand side is a concave quadratic function. The
smallest value ω can attain is the smallest root ω0 of the quadratic function, that is,

ω0 =
−∥d∥2 +

√
∥d∥4 − ∥d∥2(∥d∥2 − λTa2)(1− λTa2∥ρ∥2)

∥d∥2(∥d∥2 − λTa2)
.

We have

θ(w0) =
−1

λTa
+

∥d∥2 −
√

∥d∥4 − ∥d∥2(∥d∥2 − λTa2)(1− ∥ρ∥2λTa2)
λTa(∥d∥2 − λTa2)
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and therefore

θ(w0) > 0 ⇐⇒
∥d∥2 −

√
∥d∥4 − ∥d∥2(∥d∥2 − λTa2)(1− ∥ρ∥2λTa2)

∥d∥2 − λTa2
< 1

⇐⇒ ∥d∥2 −
√

∥d∥4 − ∥d∥2(∥d∥2 − λTa2)(1− ∥ρ∥2λTa2) > ∥d∥2 − λTa2

⇐⇒ λTa2 >
√

∥d∥4 − ∥d∥2(∥d∥2 − λTa2)(1− ∥ρ∥2λTa2)

⇐⇒ λTa4 − ∥d∥4 > ∥d∥2(λTa2 − ∥d∥2)(1− ∥ρ∥2λTa2)

⇐⇒ (λTa2 − ∥d∥2)(λTa2 + ∥d∥2) > ∥d∥2(λTa2 − ∥d∥2)(1− ∥ρ∥2λTa2)

⇐⇒ λTa2 + ∥d∥2 > ∥d∥2 − ∥d∥2∥ρ∥2λTa2

⇐⇒ 1 > −∥d∥2∥ρ∥2.

The last equivalence is clearly satisfied, concluding the proof.

A.6 Proof of Proposition 7.1

To show Proposition 7.1, we are going to map C to Ĉ := T (C), where it is easier to find the
apex ν̂. The apex of C is then given by ν = T−1(ν̂).

To compute the apex of Ĉ, we have to intersect it with lin(Ĉ)⊥, that is, the orthogonal of
its lineality space. We have that

Ĉ = {(x̂, ŷ, ẑ) ∈ R|I+|+|I−|+|I0| : ∥ŷ∥ ≤ λ(x̂, 1)}.

Since lin(Ĉ) = ⟨{λx}⟩⊥×{0}|I−|×R|I0|, we have lin(Ĉ)⊥ = ⟨{λx}⟩×R|I−|×{0}|I0|. Thus,

Ĉ ∩ lin(Ĉ)⊥ = {(αλx, ŷ, 0) : ∥ŷ∥ ≤ α∥λx∥2 + λ−1, α ∈ R}.

Let us define ν̂ := (x̂0, ŷ0, 0). Since the apex must satisfy ŷ = 0 and α∥λx∥2 + λ−1 = 0, we

get x̂0 = − λ−1

∥λx∥2 λx = − x̂(s̄)

∥x̂(s̄)∥2 and ŷ0 = 0.

For the next step to compute ν, we need to find the inverse transformation T−1. Notice that
T (s) = 1√

κ
Θ̂(V Ts+ b̂) where Θ̂ = diag(θ̂) and b̂ := (b̂i)i∈[p] with

θ̂i =

{√
|θi|, if i ∈ I+ ∪ I−,

1, otherwise.
, b̂i =

{
vT
i b

2θi
, if i ∈ I+ ∪ I−,

0, otherwise.
.

Since V and Θ̂ are both invertible, the inverse of T is given by T−1(x̂, ŷ, ẑ) = V (κΘ̂−1(x̂, ŷ, ẑ)−
b̂).

Finally, the apex of C is

ν = T−1(−
x̂(s̄)

∥x̂(s̄)∥2
, 0, 0) = V (κΘ̂−1(−

x̂(s̄)

∥x̂(s̄)∥2
, 0, 0)− b̂),

which concludes the proof.
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A.7 Minimal representation of C ∩H − f

Here we prove Proposition 5.1, which we repeat for convenience.

Proposition 5.1 The minimal representation of C − f is

ϕ(x, y) =

sup∥β∥=1
βTy−λTx

λTfx−βTfy
if aTx+ dTy = 0 and x ∈ ⟨{λ, a}⟩

+∞ otherwise.
(5.1)

In [4,9], the authors characterize the minimal representation of a full-dimensional convex
set with the origin in its interior. In [22], the author characterizes minimal representations of
arbitrary convex sets. In our setting, we can only apply the characterization of [22]. However,
this requires the computation of polars, reverse polars, and co-kernels of C ∩H − f , see [22]
for the definitions. We want to avoid this, so we present a result the builds on the result
of [4] and is enough to prove Proposition 5.1.

Lemma A.7 Let I be an arbitrary index set and let K be a convex set of the form

K = {x ∈ Rn : aTi x ≤ 1, ∀i ∈ I, Ax = 0},

such that for each i ∈ I there exists an xi ∈ K with aTi x
i = 1, and {ai : i ∈ I} is compact.

Then,

ϕ(x) =

{
supi∈I a

T
i x if x ∈ ker(A)

+∞ otherwise
.

is the minimal representation of K.

Proof It is clear that K = {x ∈ Rn : ϕ(x) ≤ 1} and that ϕ is sublinear, so ϕ is a
representation of K. Let ρ be any representation of K. It remains to show that ϕ(x) ≤ ρ(x)
for all x ∈ Rn.

Let k be the dimension of ker(A), B be a basis of ker(A), and consider the embedding of
K, Ke = {z ∈ Rk : aTi Bz ≤ 1}. Note that if Ke = {z ∈ Rk : ρ(Bz) ≤ 1} since ρ is a
representation of K, i.e., ρ ◦B is a representation of Ke.

We proceed to compute the minimal representation of Ke using [4, Theorem 1]. The above

theorem says that the minimal representation of Ke is the support function of K̂e = {y ∈
K∗

e : zTy = 1 for some z ∈ Ke}, where K∗
e = {y ∈ Rk : zTy ≤ 1 for all z ∈ Ke}, is the

polar of Ke.

Given that {ai : i ∈ I} is compact, the set {(BTai, 1) : i ∈ I} is compact. By [19, Theorem
17.3], we conclude that if αTz ≤ β is valid for Ke and α ̸= 0, then α =

∑
i∈J hiB

Tai and
β ≥

∑
i∈J hi, where J ⊆ I is finite. Since 0 ≤ 1 is also valid for Ke, we conclude that

K∗
e = conv({0} ∪ {BTai}i∈I).

Note that if y ∈ K∗
e is such that y =

∑
i∈J hiB

Tai + h00 with h0 > 0, then y /∈ K̂e. There-

fore, K̂e ⊆ conv({BTai}i∈I). Furthermore, BTai ∈ K̂e since there exists an zi such that

Bzi = xi and so aTi Bz
i = 1, by hypothesis. Thus, {BTai}i∈I ⊆ K̂e ⊆ conv({BTai}i∈I).
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Since the support function of a set S is equal to the support function of conv(S). From the
above we conclude that the minimal representation of Ke is

σ(z) = sup
i∈I

aTi Bz.

Now we can show that ϕ(x) ≤ ρ(x) for all x ∈ Rn where ρ be a representation of K. Let
x0 ∈ Rn. If x0 /∈ ker(A), then ϕ(x0) = ρ(x0) = +∞. So, let us assume that x0 ∈ ker(A)
and let z0 be such that Bz0 = x0. As we mentioned at the beginning of the proof, ρ ◦ B is
a representation of Ke. Since σ is the minimal representation, σ(z0) ≤ ρ(Bz0). The above
inequality is equivalent to ϕ(x0) ≤ ρ(x0), which is what we wanted to prove.

Proof (Proposition 5.1) We have that C − f = {(x, y) ∈ ⟨{λ, a}⟩ × Rm : ∥y + fy∥ ≤
λTx+ fy , aTx+ dTy = 0} or, equivalently, C − f = {(x, y) ∈ ⟨{λ, a}⟩ × Rm : βT(y + fy) ≤
λT(x+ fx) ∀β ∈ Dm, aTx+ dTy = 0}. Note that

βT(y + fy) ≤ λT(x+ fx) ⇐⇒
βTy − λTx

λTfx − βTfy
≤ 1.

The equivalence is correct given that λTfx − βTfy > 0 since f is in the relative interior of
C. Therefore,

C − f = {(x, y) ∈ ⟨{λ, a}⟩ × Rm :
βTy − λTx

λTfx − βTfy
≤ 1 ∀β ∈ Dm, aTx+ dTy = 0}.

We are going to show that ν−f ∈ C−f , where ν is defined by (4.3), and that every inequality
is achieved at equality at that point. Since ν ∈ C, we have ν − f ∈ C − f . Evaluating the

inequality defined by β ∈ Dm at ν − f yields,
βT(−fy)−λT(ν−fx)

λTfx−βTfy
= 1, where the equality

follow from λTν = 0. It remains to prove that { βTy−λTx
λTfx−βTfy

: β ∈ Dm} is compact in order

to be able to apply Lemma A.7. It is clear that the set is closed. The boundedness of the set
follows from the fact that the denominator is away from 0. This last claim can be verified
as follows, infβ∈Dm λTfx − βTfy = λTfx − ∥fy∥ and, by construction, λ = fx

∥fx∥ . Thus,

λTfx − ∥fy∥ = ∥fx∥ − ∥fy∥ > 0 since f /∈ Sg .

Applying Lemma A.7 finally proves the result.
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18. Gonzalo Muñoz and Felipe Serrano. Maximal quadratic-free sets. Mathematical Pro-

gramming, pages 1–42, 2021.
19. Ralph Tyrell Rockafellar. Convex analysis. Princeton university press, 1970.
20. Asteroide Santana and Santanu S. Dey. The convex hull of a quadratic constraint over

a polytope. SIAM Journal on Optimization, 30(4):2983—-2997, 2020.
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